

AVOGADRO Environmental Corporation

Clean Air and Water, for Today and Tomorrow

COMPLIANCE EMISSIONS TEST REPORT FOR EVALUATION OF THE JENBACHER ENGINE

GUDE LANDFILL ROCKVILLE, MARYLAND

Prepared for:

SCS ENGINEERS

6001 Olney-Laytonsville Road Laytonsville, MD. 20882 Attn: Mr. Tyrone Jackson

Submitted to:

STATE OF MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration (ARMA) 1800 Washington Boulevard, Suite 715
Baltimore, MD. 21230
Attn: Mr. John Artes

Prepared by:

AVOGADRO ENVIRONMENTAL CORPORATION

1350 Sullivan Trail, Suite A Easton, PA. 18040

Attn: Ms. Amber-Rose Cifra

Avogadro Environmental Corporation Project No. 14-2143

Test Date: November 19th, 2014

Report Date: January 9, 2015

SCS Engineers - Gude Landfill Avogadro Project No. 14-2143 January 9, 2015

APPENDIX V:

APPENDIX VI:

APPENDIX VII:

APPENDIX VIII:

TAB	LE OF	<u>CONTENTS</u>	'AGE N	Vn.
1.0		RODUCTION	1	
	1.1	PROJECT SUMMARY	1	
2.0	DED C	PROGRAM RESPONSIBLE PARTIES	1	
3.0	TECE	SONNEL AND CERTIFICATIONS	2	
5.0	3.1	HNICAL APPROACH / METHODOLOGY SAMPLING PROCEDURES	2 3	
	3.2		3	
4.0		QUALITY ASSURANCE INFORMATION RCE INFORMATION	4	
	4.1	PROCESS DESCRIPTION	5	
	4.2	PROCESS OPERATING DATA	5	
	4.3	SAMPLING LOCATION INFORMATION	5	
5.0	RESU	ILTS / SUMMARY	5 6	
TE A TOX	TO CI		0	
TABL	<u>ES</u>			
TABL	E 1:	SUMMARY OF TEST METHODS	3	
TABLI	E 2:	SUMMARY OF SAMPLING LOCATION		
TABLI	E 3:	SUMMARY OF NO _X , CO, AND VOC EMISSIONS – JENBACHER ENGIN	5	
		TO THE POOL EMISSIONS - JENBACHER ENGIN	VE 6	
APPEN	NDICE	<u>S</u>		
APPEN	IDIX I:	TEST PROTOCOL AND CORRESPONDENCE		
APPENDIX II:		: PROCESS OPERATING DATA		
APPEN	DIX II			
APPENDIX IV:		Difficulties		
4.7070777		: EMISSION CALCULATION SPREADSHEETS		

EQUIPMENT CALIBRATION DATA

REFERENCE METHOD DATA SUMMARIES

LABORATORY ANALYTICAL RESULTS

QUALITY ASSURANCE DATA

SCS Engineers – Gude Landfill Avogadro Project No. 14-2143 January 9, 2015

1.0 INTRODUCTION

1.1 PROJECT SUMMARY

A Subpart JJJJ compliance emissions test program was performed on the outlet of the Jenbacher engine at the GUDE LANDFILL (GUDE) in Rockville, Maryland. The purpose of this test program was to measure emissions of carbon monoxide (CO), nitrogen oxides (NO_x) and total non-methane hydrocarbons (VOC) for comparison with emission limits as specified in the operating permit conditions for the engine and to demonstrate compliance with the requirements of 40 CFR 60 Subpart JJJJ.

AVOGADRO ENVIRONMENTAL CORPORATION (Avogadro) was retained by SCS ENGINEERS (SCS) to prepare the test protocol, to conduct the Subpart JJJJ compliance evaluation of the engine, and to submit a test report.

This report is organized as follows. Section 3.0 describes the test procedures, Section 4.0 describes the process and Section 5.0 presents test results along with test dates and times.

1.2 PROGRAM RESPONSIBLE PARTIES

Consultant:

SCS Engineers

600 E. Gude Drive

Rockville, MD. 20850

Contact:

Mr. Tyrone Jackson

Cellular: 240-994-5363

email: TJackson@scsengineers.com

Facility:

Gude Landfill

600 E. Gude Drive

Rockville, MD. 21850

Contact:

Mr. Chet Sattizahn

Telephone: 610-559-8776 x 116

Fax: 610-559-8913

Email: csattizahn@montrose-env.com

Test Firm:

Avogadro Environmental Corporation

1350 Sullivan Trail, Suite A

Easton, PA. 18040

2.0 PERSONNEL AND CERTIFICATIONS

SAMPLING ON THIS PROJECT WAS PERFORMED BY:

Chet Sattizahn

Avogadro Environmental Corp.

Thomas Weber

Avogadro Environmental Corp.

CALCULATIONS AND REPORT PREPARATION WERE PERFORMED BY:

Amber-Rose Cifra

Avogadro Environmental Corp.

THE TESTING WAS OBSERVED BY:

Tyrone Jackson

SCS Engineers

Rory Mandelke

SCS Engineers

REPORT PREPARED BY:

Amber-Rose Cifra

QA/QC Scientist

REPORT REVIEWED AND CERTIFIED BY:

I certify that I have personally examined and am familiar with the information developed or received by Avogadro personnel in this report and, to the best of my knowledge, this information is true, accurate, and complete

Thomas J. Weber, QSTI

Senior Project Manager

3.0 TECHNICAL APPROACH / METHODOLOGY

3.1 SAMPLING PROCEDURES

Testing was performed in accordance with the protocol and correspondence presented in Appendix I. All test methods utilized for this compliance evaluation are summarized in Table 1 and conform to Title 40, Code of Federal Regulations, Part 60, (40 CFR 60) Appendix A test procedures or those of the MDE. Three, one-hour test runs were conducted on the outlet of the engine.

TABLE 1: SUMMARY OF TEST METHODS

Parameters	USEPA Test Method			
Velocity / Volumetric Flowrate	USEPA Methods 1 & 2, "Determination of stack gas velocity as volumetric flow rate (Type S pitot tube)"			
Carbon Dioxide (CO ₂), Oxygen (O ₂)	USEPA Method 3A, "Determination of oxygen and carbon dioxide concentrations in emissions from stationary sources (instruments analyzer procedure)"			
Moisture	USEPA Method 4, "Determination of moisture content in stack gases"			
Nitrogen Oxides (NO _x)	USEPA Method 7E, "Determination of nitrogen oxides emission from stationary sources (instrumental analyzer procedure)"			
Carbon Monoxide (CO)	USEPA Method 10, "Determination of carbon monoxide emissions from stationary sources"			
Total Hydrocarbons (THC) as Methane	USEPA Method 25A, "Determination of total gaseous organic concentration using a flame ionization analyzer"			
Methane	USEPA Method 18, "Measurement of gaseous organic compound emissions by gas chromatography"			
Total Non-Methane Hydrocarbons as Propane (VOC)	USEPA Methods 25A/18 (By Difference)			

3.2 QUALITY ASSURANCE INFORMATION

Calibration of the equipment employed to measure the parameters of interest is required per the USEPA test methods. All calibration data for this test program is contained in Appendix V of this report. All quality assurance data for this test program is contained in Appendix VI of this report. The following equipment calibration and quality assurance checks warrant individual discussion.

Field Data: Appendix III contains copies of the field data sheets.

<u>Pitot Tubes:</u> Pitot tubes are calibrated in accordance with USEPA Method 2. All new pitot tubes or those meeting the dimensions of USEPA Method 2, section 6.1, are assigned a baseline coefficient of 0.84, per section 10.1 of this method.

<u>Thermocouples</u>: The thermocouples used during the test program were post-calibrated using the procedures of USEPA Alternate Method 11.

Dry Gas Meters: Dry gas meters are calibrated prior to use in accordance with USEPA Method 5, section 10.3 using a dry gas meter as described in section 16.1. Dry gas meters were calibrated in the field in accordance with Alternate Method 009.

Span Gas Certifications: Span gas certifications are provided by the supplier, and copies are presented in Appendix VI.

NOx Converter Efficiency Check: NO_x converter efficiency checks were conducted in accordance with USEPA Method 7E. This data is presented in Appendix VI.

<u>Stratification Check:</u> During the first test run, a stratification test was conducted, using oxygen, in accordance with USEPA Method 7E, Section 8.1.2. Stratification test data is presented in Appendix VII. As a result, a single point was sampled for all subsequent gaseous test runs.

4.0 SOURCE INFORMATION

4.1 PROCESS DESCRIPTION

The Gude Landfill covers approximately 100 acres and is located at 600 E. Gude Drive near Rockville, MD. Landfill gas, consisting of 45 to 50 percent methane, is generated as the waste biodegrades. The gas is collected with an extensive system of wells and pipes and directed to an on-site power plant consisting of a compressor that delivers gas to an 848 kW GE Jenbacher reciprocating internal combustion engine generator ("genset").

4.2 PROCESS OPERATING DATA

During each test run, values for landfill gas engine flow (scfm), engine electrical output (kW), and methane concentration (%) were recorded. These data are presented in Appendix II.

4.3 SAMPLING LOCATION INFORMATION

The sample location was verified in the field to conform to USEPA Method 1. Acceptable cyclonic flow conditions were confirmed prior to testing using USEPA Method 1, Section 11.4. Appendix III contains cyclonic flow data.

TABLE 2: SUMMARY OF SAMPLING LOCATION

Sampling		Distance from neare	Number of		
Location	Stack ID	Downstream EPA "B"	Upstream EPA "A"	Traverse Points	
Outlet	13.25	51 inches	28 inches	Sixteen	
Ouner	inches	(3.85 duct diameters)	(2.11 duct diameters)	(eight per port)	

5.0 **RESULTS / SUMMARY**

The emission test results are summarized in Table 3. Known emission limits are listed in the table below. Detailed emission calculations are presented in Appendix IV.

TABLE 3: SUMMARY OF NO_X, CO, AND VOC EMISSIONS – JENBACHER ENGINE

1	2	3	Average	Permit Emission Limit	Subpart JJJJ Emission Limit			
11/19/2014	11/19/2014	11/19/2014			:- -			
10:10 – 11:10	11:38 – 12:42	13:08 – 14:08		one and and				
Nitrogen Oxides [NOx as NO ₂]								
96.18	100.79	106.74	101.23	pro true sump	÷.			
42.17	44.06	46.91	44.38		220			
0.0018	0.0019	0.0020	0.0019	***				
0.58	0.62	0.64	0.62	3.0	3.0			
Carbon Monoxide [CO]								
609.17	616.43	617.86	614.49					
267.08	269.48	271.52	269.36	And the	610			
2.23	2.32	2.27	2.28	5.0	5.0			
Total Non – Methane Hydrocarbons (as Propane) [VOC] by difference								
<0.3	<0.3	<0.3	<0.3					
<0.15	< 0.15	< 0.15	< 0.15		80			
< 0.002	< 0.002	< 0.002	< 0.002	1.0	1.0			
	11/19/2014 10:10 – 11:10 96.18 42.17 0.0018 0.58 609.17 267.08 2.23 otal Non – Metha <0.3 <0.15 <0.002	11/19/2014 11/19/2014 10:10 – 11:10 11:38 – 12:42 Nitrogen Oxides 96.18 100.79 42.17 44.06 0.0018 0.0019 0.58 0.62 Carbon Mon 609.17 616.43 267.08 269.48 2.23 2.32 otal Non – Methane Hydrocarbons <0.3 <0.3 <0.15 <0.15 <0.002 <0.002	11/19/2014 11/19/2014 11/19/2014 10:10 - 11:10 11:38 - 12:42 13:08 - 14:08 Nitrogen Oxides [NOx as NO ₂] 96.18 100.79 106.74 42.17 44.06 46.91 0.0018 0.0019 0.0020 0.58 0.62 0.64 Carbon Monoxide [CO] 609.17 616.43 617.86 267.08 269.48 271.52 2.23 2.32 2.27 otal Non - Methane Hydrocarbons (as Propane) [Vertical Non - Methane Hydrocarbons (as Pro	11/19/2014 11/19/2014 11/19/2014 10:10 - 11:10 11:38 - 12:42 13:08 - 14:08 Nitrogen Oxides [NOx as NO ₂] 96.18 100.79 106.74 101.23 42.17 44.06 46.91 44.38 0.0018 0.0019 0.0020 0.0019 0.58 0.62 0.64 0.62 Carbon Monoxide [CO] 609.17 616.43 617.86 614.49 267.08 269.48 271.52 269.36 2.23 2.32 2.27 2.28 otal Non – Methane Hydrocarbons (as Propane) [VOC] by difference of the color of	1 2 3 Average Limit 11/19/2014 11/19/2014 11/19/2014 10:10 - 11:10 11:38 - 12:42 13:08 - 14:08 Nitrogen Oxides [NOx as NO ₂] 96.18 100.79 106.74 101.23 42.17 44.06 46.91 44.38 0.0018 0.0019 0.0020 0.0019 0.58 0.62 0.64 0.62 3.0 Carbon Monoxide [CO] 609.17 616.43 617.86 614.49 267.08 269.48 271.52 269.36 2.23 2.32 2.27 2.28 5.0 otal Non - Methane Hydrocarbons (as Propane) [VOC] by difference <0.3			

ppmv, dry

= parts per million by volume, dry basis

ppmv, dry @ 15% O₂ = parts per million by volume, dry basis, corrected to 15% oxygen

pounds/KW-hr grams/BHP-hr

= pounds per kilowatt hour of generation = grams per brake-horsepower hour